Two-dimensional topological insulator state and topological phase transition in bilayer graphene.
نویسندگان
چکیده
We show that gated bilayer graphene hosts a strong topological insulator (TI) phase in the presence of Rashba spin-orbit (SO) coupling. We find that gated bilayer graphene under preserved time-reversal symmetry is a quantum valley Hall insulator for small Rashba SO coupling λ(R), and transitions to a strong TI when λ(R)>√[U(2)+t(⊥)(2)], where U and t(⊥) are, respectively, the interlayer potential and tunneling energy. Different from a conventional quantum spin Hall state, the edge modes of our strong TI phase exhibit both spin and valley filtering, and thus share the properties of both quantum spin Hall and quantum valley Hall insulators. The strong TI phase remains robust in the presence of weak graphene intrinsic SO coupling.
منابع مشابه
Abstract Submitted for the MAR13 Meeting of The American Physical Society Topological phase transition in hexagonal boron-nitride bilayers
Submitted for the MAR13 Meeting of The American Physical Society Topological phase transition in hexagonal boron-nitride bilayers modulated by gate voltage1 GUOJUN JIN, XUECHAO ZHAI, Nanjing University — We study the gate-voltage modulated electronic properties of hexagonal boron-nitride bilayers with two different stacking structures in the presence of intrinsic and Rashba spin-orbit interacti...
متن کاملBand topology and quantum spin Hall effect in bilayer graphene
We consider bilayer graphene in the presence of spin orbit coupling, to assess its behavior as a topological insulator. The first Chern number n for the energy bands of single and bilayer graphene is computed and compared. It is shown that for a given valley and spin, n in a bilayer is doubled with respect to the monolayer. This implies that bilayer graphene will have twice as many edge states ...
متن کاملMetal-insulator transition and phase separation in doped AA-stacked graphene bilayer
A. O. Sboychakov,1,2 A. L. Rakhmanov,1,2,3 A. V. Rozhkov,1,2 and Franco Nori1,4 1Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198, Japan 2Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia 3Moscow Institute for Physics and Technology (State University), 141700 Moscow Region, Russia 4Department of Physics, University of Michiga...
متن کاملProximity effects in cold atom artificial graphene
Cold atoms in an optical lattice with brick-wall geometry have been used to mimic graphene, a two-dimensional material with characteristic Dirac excitations. Here we propose to bring such artificial graphene into the proximity of a second atomic layer with a square lattice geometry. For non-interacting fermions, we find that such bilayer system undergoes a phase transition from a graphene-like ...
متن کاملQuantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures.
Topological insulators are bulk insulators that possess robust chiral conducting states along their interfaces with normal insulators. A tremendous research effort has recently been devoted to topological insulator-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. Here we establish the potential existence of topological proximity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 107 25 شماره
صفحات -
تاریخ انتشار 2011